

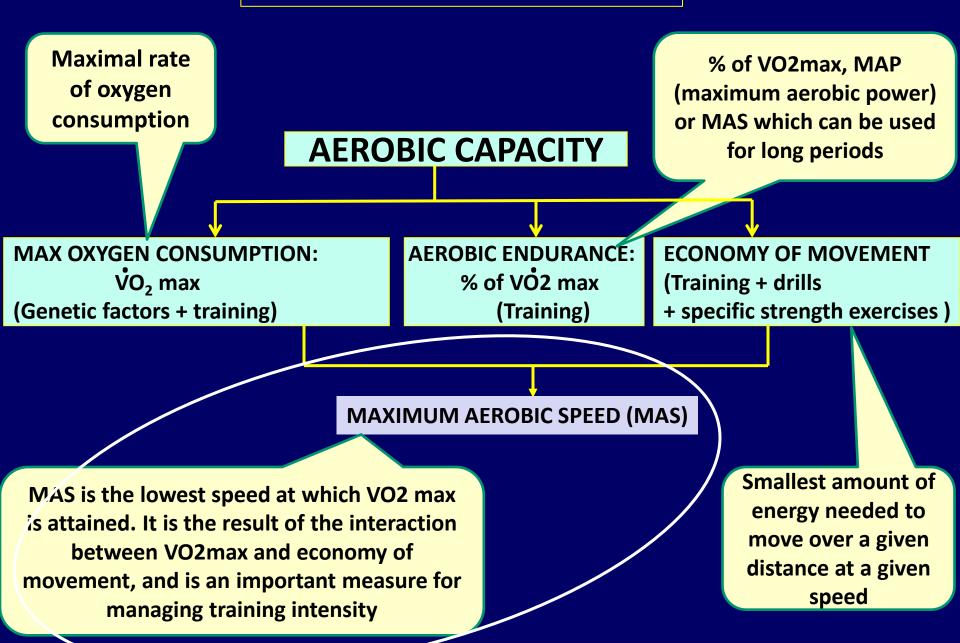
Elite Youth Player Development Workshop Nyon 15-18 April 2016

THE VAMEVAL TEST AND USE OF THE RESULTS IN FOOTBALL TRAINING

GEORGES CAZORLA

cazorlageorges@gmail.com

Research Committee FFF-DTN


CONTENTS

1 – Definitions

- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
- 5 How to use VAMEVAL test results

6 – How to use maximum aerobic speed (MAS) in training

SOME INITIAL DEFINITIONS

CONTENTS

- **1** Definitions
- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
- 5 How to use VAMEVAL test results
- 6 How to use maximum aerobic speed (MAS) in training

Numerous tests are currently used in football to evaluate aerobic capacity.

However the majority of them have never been scientifically validated.

When a coach or physical trainer uses one of these tests, the following questions arise:

- Is this test useful?
- What do I want to achieve with this test?
- Why use this test instead of another one?
- How can I use the results I get from this test?

VALIDITY proof that the test measures what it is supposed to measure

Depending on the abilities

PRE-ESTISTING BENCHMANNESS

By sey age and soecialism

HALISTIN OR HIMKESS

Reproducibility Hie same test done

USING available resources

ACCESSIBILIT

WITH THE SAME AT THE RESS SHOULD

FACTORS FOR CHOOSING **AND/OR DEVELOPING**

A TEST

FUNCTIONALITY A test is functional when its results can be used to manage exercise intensity

RELEVANCE

WHY TEST AND DEVELOP AEROBIC CAPACITY IN FOOTBALL?

High aerobic capacity allows an athlete:

1- to be more active without becoming overly fatigued during a match lasting 2×45 minutes

2- to recover better between two or more intensive efforts

3- to increase training capacity (in both intensity and duration)

FROM DIRECT TESTING... TO TRAINING GROUND TESTS ACCESSIBLE TO LARGER NUMBERS

RUNNING TESTS

FROM THE LAB...TO THE PITCH

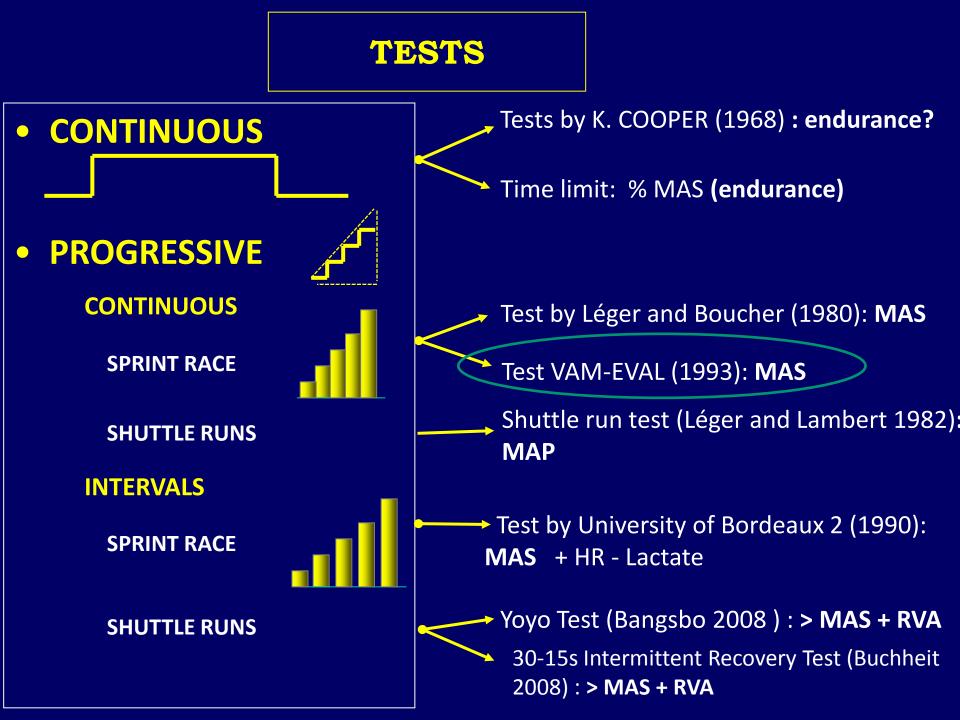
DIRECTLY MEASURING VO2 MAX ON THE TREADMILL MEASURING AEROBIC RUNNING SPEED ON THE PITCH

FUNCTIONALITY

A test is said to be functional when the result(s) can be

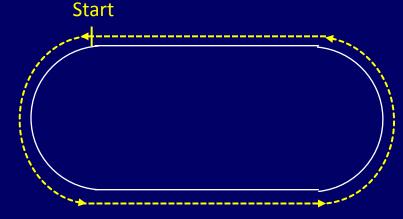
used to guide and control coaching or training and to

make modifications to training sessions


CONTENTS

- 1 Definitions
- 2 How to choose a test
- -3 Comparison of the main tests: VAMEVAL protocols
 - 4 In-depth analysis of VAMEVAL
 - 5 How to use VAMEVAL test results
 - 6 How to use maximum aerobic speed (MAS) in training

CLASSIFYING THE DIFFERENT TESTS FOR EVALUATING AEROBIC CAPACITY: AEROBIC ENDURANCE (AE), MAXIMUM AEROBIC POWER (MAP) OR MAXIMIM AEROBIC SPEED (MAS)



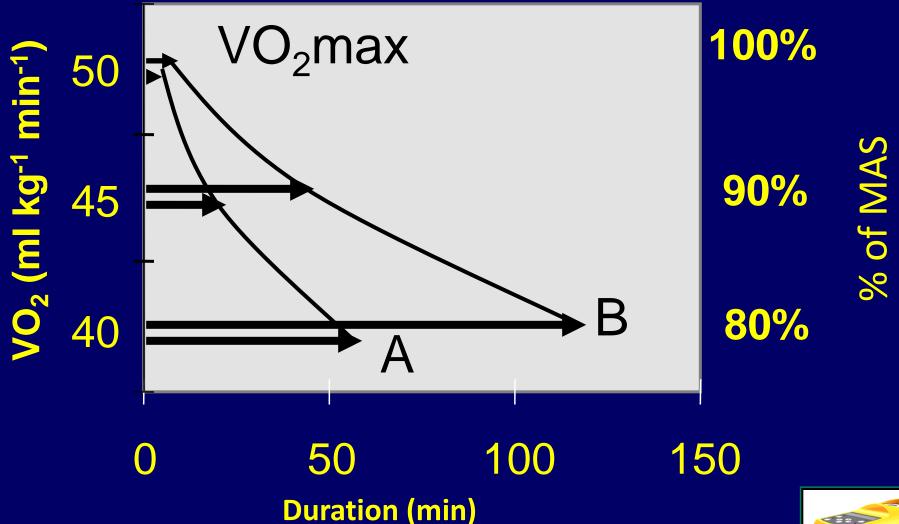
TRACK SPRINTS

CONTINUOUS TESTS

Test of either 1) 12 min or 2) 2400m (K. COOPER 1965)

There are two variations of the Cooper test. The aim of the 12 minute test is to run as far as possible while in the 2400m test it is to run as fast as possible. The result indicates the level of physical fitness of the participant.

ADVANTAGES :

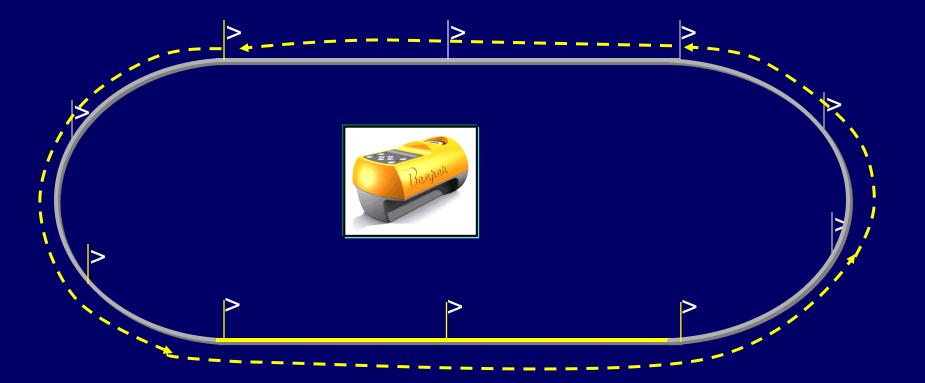

- Very accessible, only an athletics track and a stopwatch (or watch) required
- Benchmarks available set by sex and age (children, teenagers, adults, seniors)

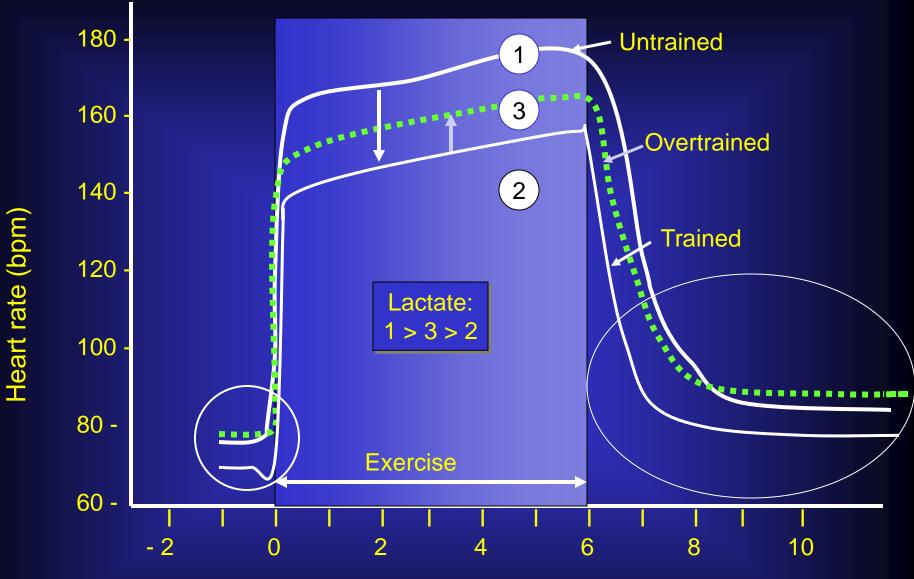
DISADVANTAGES :

- No warm-up: danger for at-risk individuals
- Need to know how to run at a regular speed as fast as possible
- Varying correlation with VO2max depending on the group
- Does not give maximum aerobic speed (MAS)

CONTINUOUS TESTS (continued)

TIME LIMIT




Must know MAS and how to use a beep test machine

ESTABLISHING A TIME LIMIT

Decide the percentage of MAS (90, 95, 100, 105 or 110 % of MAS), regulate the beeper and measure the time set for each speed For percentages lower than MAS monitoring HR throughout the test and for 3 minutes afterwards can be an excellent way to establish a physiological profile throughout the season.

Duration (min)

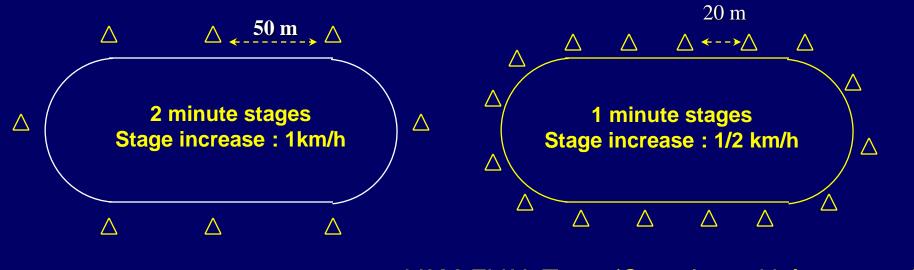
Evolution of the HR curve during and after a 6 minute run maintained at 90% MAS

II - PROGRESSIVE TESTS SHUTTLE RUNS

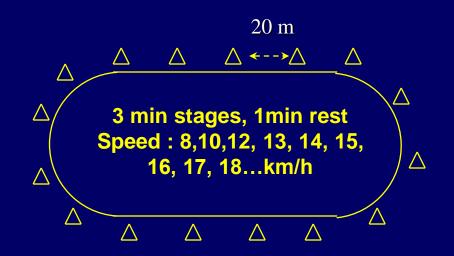
LEGER AND BOUCHER (1980)
 VAMEVAL (Cazorla and Léger; 1993)

II - PROGRESSIVE TESTS IN A LINE

Materials needed and principles of the three following tests:

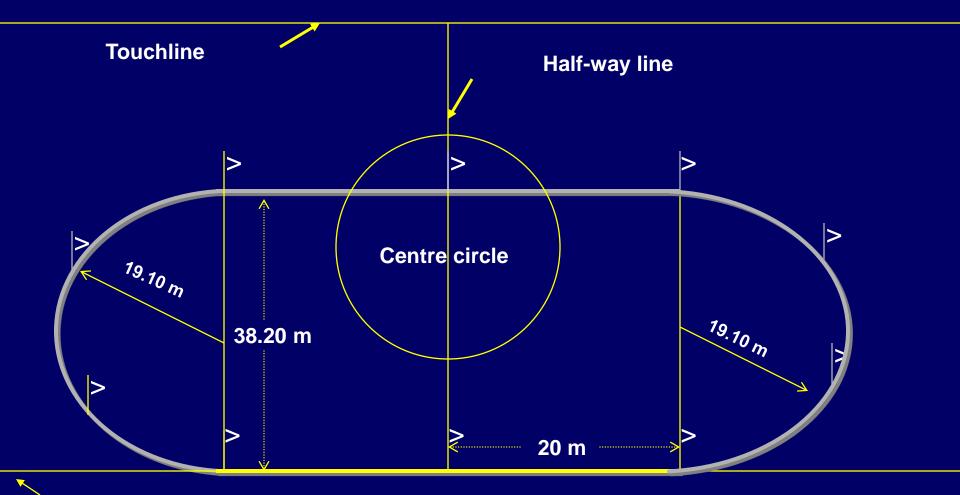

- Multiple 20m or 50m sections of track
- Markers placed every 20m or 50m
- 1 CD (supplied by UEFA?) with timed beeps or a beeper

« Move to the next marker at each beep.


The interval between beeps reduces, increasing the speed as the test

protocol progresses. »

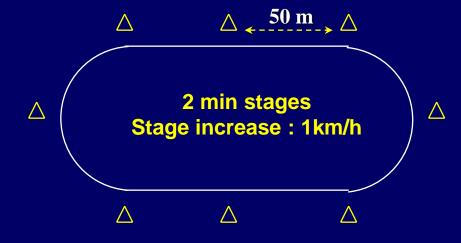
Léger and Boucher test, 1980 VAM-EVAL Tests (Cazorla and Léger, 1993)



University of Bordeaux 2 test, Cazorla (1992)

With and without HR monitors

How to measure out a 200m track on a football pitch



Touchline

UNIVERSITY OF MONTREAL TEST

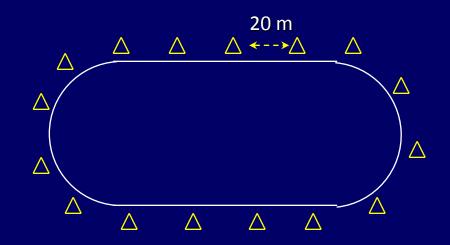
Léger L. and Boucher R. An indirect continuous running Multistage field test: Université de Montréal Track Test. Can J Appl Sport Sci. 5: 77-84, 1980

ADVANTAGES


Benchmark test/trials

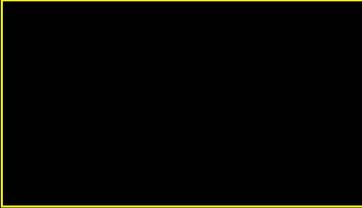
Valid (Léger et Boucher 1980; Lacour et al.1991) for measuring VO2max and MAS

DISADVANTAGES


- > 50m intervals too long to run at a regular pace
- > 1km/hr increase per stage is too much

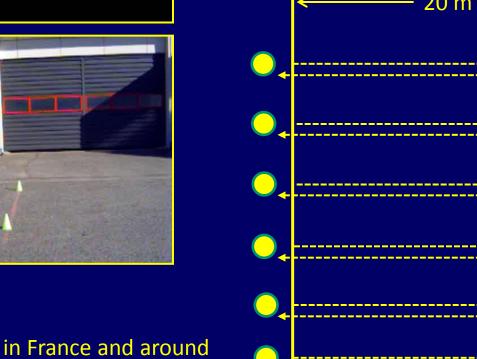
As a result it scores averagely for precision and accessibility

VAMEVAL TEST Cazorla G. and Léger L. 1993.

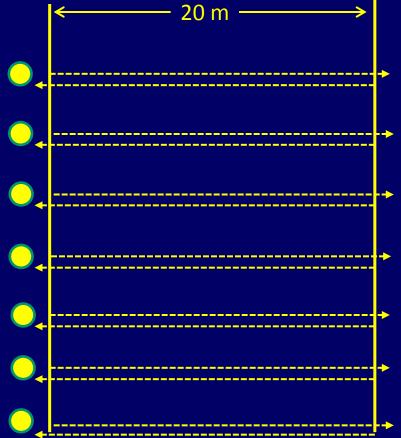


ADVANTAGES

- Indirect validity using the Léger and Boucher test,
- Precise calculation of MAS
- Possible extrapolation of VO2max
- Benchmark results are available for footballers


II - PROGRESSIVE TESTS (continued)

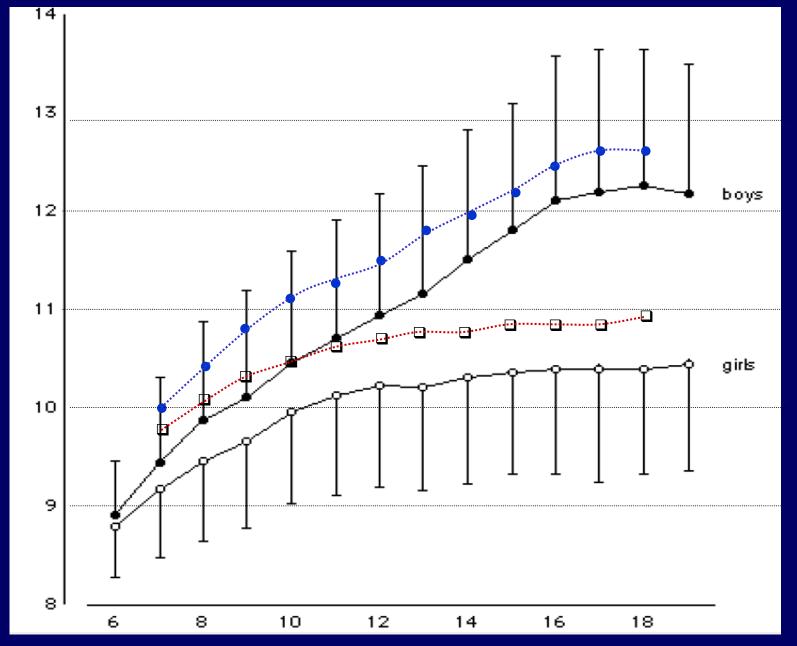
2-2 CONTINUOUS SHUTTLE RUNS TEST (Léger et al. 1981)



SHUTTLE-RUN TEST 20m

Léger L. and Lambert J. 1982. Eur. J. Appl. Physiol. 49

Extremely popular in France and around the world in over 60 countries Used in schools in France but also part of aerboic fitness tests for firefighters, navy and police..

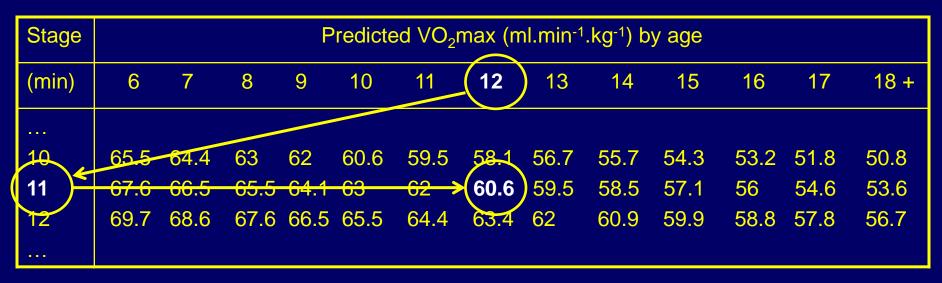

Standards calculated based on results collected from 37 countries

Olds T. Tomkinson G. Léger L. Cazorla G. 2006. Journal of Sports Sciences 24(10): 1025-1038

	boys			girls		
age	n	mean	SD	n	mean	SD
years		km.h ⁻¹	km.h ⁻¹		km.h ⁻¹	km.h ⁻¹
6	5685	8.917	0.545	5606	8.804	0.513
7	10138	9.454	0.871	10168	9.188	0.700
8	9526	9.882	1.000	10868	9.461	0.812
9	12935	10.120	1.085	12700	9.671	0.882
10	13859	10.459	1.142	13751	9.965	0.930
11	15480	10.716	1.202	15446	10.135	1.011
12	24544	10.951	1.237	24255	10.241	1.041
13	27535	11.166	1.303	27110	10.220	1.061
14	27106	11.517	1.323	24924	10.311	1.086
15	22465	11.812	1.283	20197	10.366	1.031
16	13311	12.122	1.462	13547	10.396	1.055
17	15108	12.192	1.450	14884	10.408	1.159
18	8580	12.263	1.395	8913	10.393	1.053
19	4917	12.182	1.315	4468	10.442	1.068
total	211189			206837		

n = sample size; SD = standard deviation.

How do French adolescents rank?


Olds T. Tomkinson G. Léger L. Cazorla G. 2006. Journal of Sports Sciences 24(10): 1025-1038

Speed attained at the last stage (km.h⁻¹)

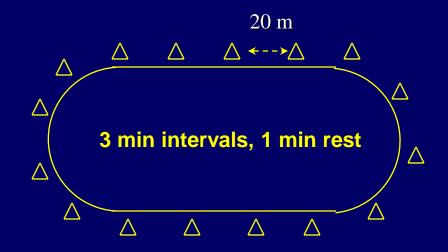
Based on the stage reached and the age of the participant an equation and/or a correlation table can be used to extrapolate VO₂max.

<u>Equation</u> : $VO_2max = 31.025 + 3.238$ speed (km/h) - 3.248 age (years) + 0.1536 speed (km/h) x age (years) (as per Léger et al. 1983- 84)

Table : Example of part of a correlation table

But this test also depends on agility when changing direction and does not directly give maximum aerobic speed (MAS) in a straight line.

Prediction of maximum aerobic speed during "normal" running based on knowledge of maximum aerobic speed during shuttle runs


Shuttle run (km/h)	Regular running (km/h)	Shuttle run (km/h)	Regular running (km/h)
8.5	8.8	13.5	16.3
9.0	9.5	14.0	17.0
9.5	10.3	14.5	17.8
10.0	11.0	15.0	18.5
10.5	11.8	15.5	19.3
11.0	12.3	16.0	20.0
11.5	13.3	16.5	20.8
12.0	14.0	17.0	21.5
12.5	14.8	17.5	22.3
13.0	15.5	18.0	23.0

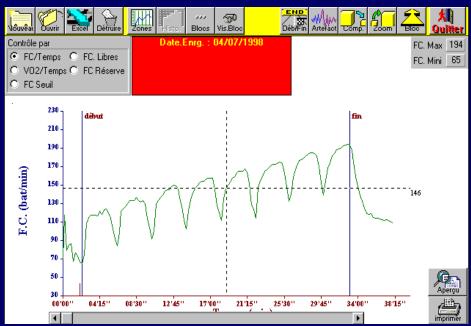
II - PROGRESSIVE TEST 2-3 INTERMITTENT SPRINTS

UNIVERSITY OF BORDEAUX 2 TEST (Cazorla G., 1993)

This test should only be used if the players have heart rate monitors to measure their cardiac adaptation and if their lactate levels can

be measured during the test

University of Bordeaux 2 Test, (TUB2, Cazorla, 1992)

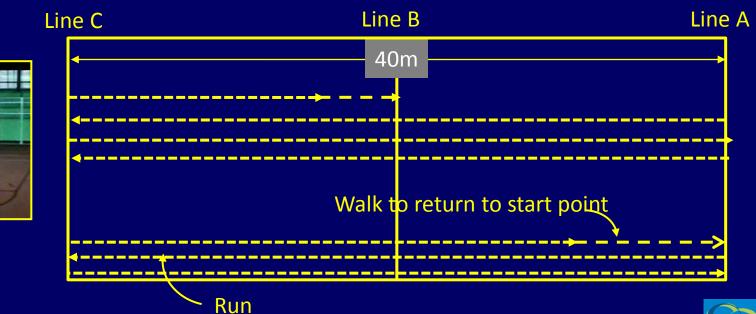

Sports co et al version: Speed: 8,10,12, 13, 14, 15, 16, 17, 18...km/h Long sprint version: Speed: 12, 14, 16, 17, 18, 19, 20, 21, 22, 23...km/h

University of Bordeaux 2 test TUB2 (Cazorla G, 1992) -3 minute intervals.

- Increase the speed after each interval = 8, 10, 12, 13, 14, 15, 16, 17, 18 km/h....

- 1 minute rest between each interval (Calculations, record HR and note HR recovery rates between each interval).

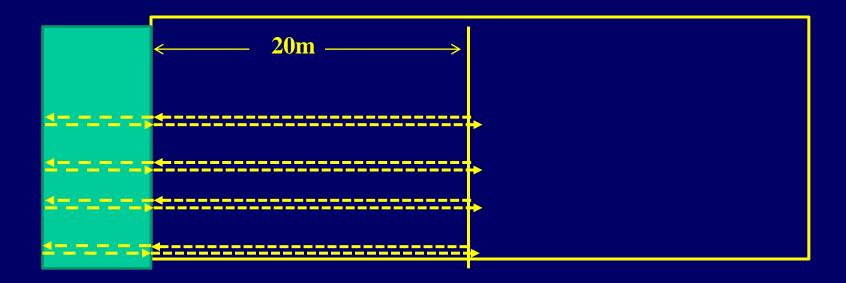
II – PROGRESSIVE TESTS 2-4 INTERMITTENT SHUTTLE RUNS


TEST 30-15 Intermittent Fitness Test Buchheit M. 2008

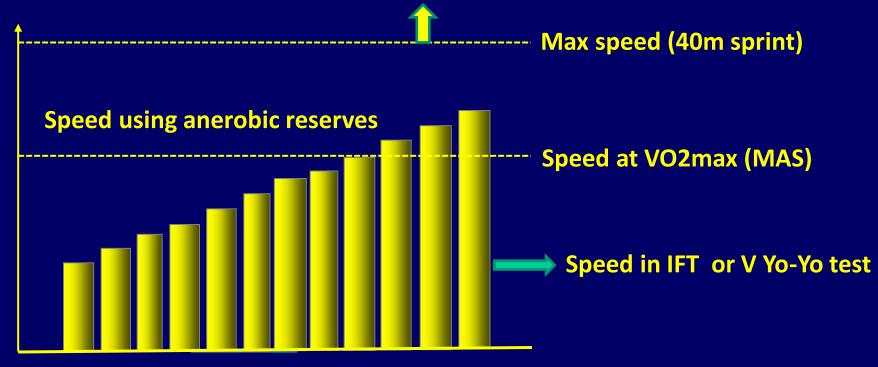
> Yo-Yo Intermittent Recovery Test Bansgsbo J. et al. 2008.

TEST 30-15 Intermittent Fitness Test

Buchheit M. Science & Sports 23: 2008



Yo-Yo Intermittent Recovery Test


Bansgsbo J., Laia M., Krustrup P. 2008. Sport Med 38(1)

COMPARISON OF THE FIVE TESTS

	VO2	VO2		ΔSp.	HR	Δ Lactate		Δ CRP	
n = 10	(L.min ⁻¹)	ml.min ⁻¹ .kg ⁻¹		L.Bou.	(b.min⁻¹)	(mMol/L)		(mg/L)	
30-15s BUCHHEIT	4,91	64,20	20,10*	<u>+ 3,75</u>	192,7	10,82 *	465%	0,700 *	82%
	0,40	5,59	1,13		10,06	2,21	95%	0,080	9%
YO-YO Test	4,90	63,50	18,31*	<u>+ 1,96</u>	193	10,50 *	426%	0,686*	82%
	0,44	4,01	0,77		9,64	2,27	92%	0,130	15%
			Vit						
			km.h⁻¹						
LEGER BOUCHER	4,87	62,78	16,35	Réf.	192,2	8,13	347%	0,268	33%
REFERENCE TEST	0,80	5,12	1,47		8,12	1,92	82%	0,065	8%
VAMEVAL	4,84	62,20	16,65	+ 0.3	192,5	8,20	324%	0,254	30%
	0,60	5,22	2,68		8,34	1,62	64%	0,059	7%
SHUTTLE RUNS L. LEGER	4,91	63,40	13,36*	- 2,99	193,4	8,14	332%	0,335	39%
	0,64	7,62	1,11		10,19	1,32	54%	0,043	5%

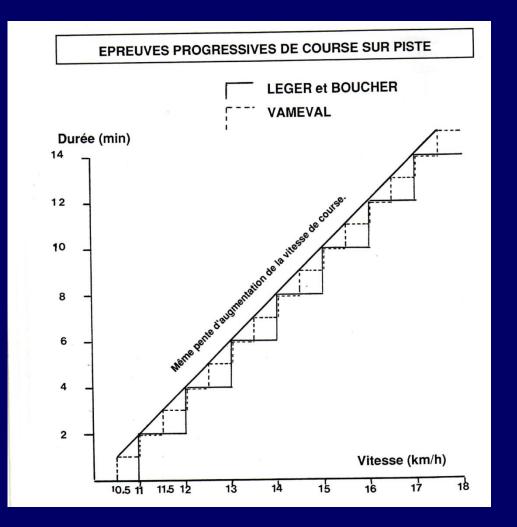
According to Buchheit 2010

Interval shuttle run tests at increasing speeds claim to be the most specific .

They evaluate several parameters at the same time:

- MAS + anaerobic speed reserves (ASR),
- + Recovery quality between intervals,
- + Acceleration ability after a stop,
- + Agility in changing direction

Even if **each one of these parameters** can be of relevancein team sports, the two tests above do not allow for any individualisation to show development of any given factor Isn't practising the sport under consideration the best way of establishing the specificity of a test?

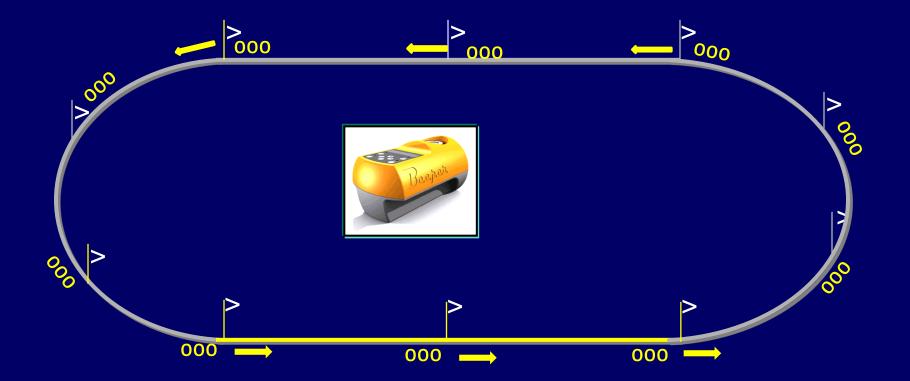

CONCLUSION AND THOUGHTS

- 1- Whatever the progressive test used on the pitch, max HR and VO2max can be reached.
- 2- Maximum aerobic speed (MAS) can be calculated using the three tests studied: Léger and Boucher, VAM-EVAL and TUB2 (thesis, Josselin Laffond). These tests are recommended for use in managing training intensity, along with knowledge of athletes' MAS.
- 3- The shuttle-run test can be used to test VO2max in children, teenagers and adults but not MAS. This test is only recommended to estimate aerobic ability.
- 4- Interval shuttle run tests (Bangsbo, Buchheit) overestimate MAS because they use anaerobic components much higher than the anaerobic speed reserves are.
 Based on the fact that they are more practical (or specific), these tests are mostly used in team sports but their functionality is questionable.

CONTENTS

- **1** Definitions
- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
 - 5 How to use VAMEVAL test results
 - 6 How to use maximum aerobic speed (MAS) in training

Léger L. and Boucher R. An indirect continuous running Multistage field test : The Université de Montréal Track Test.. Can J Appl Sport Sci. 5: 77-84, 1980

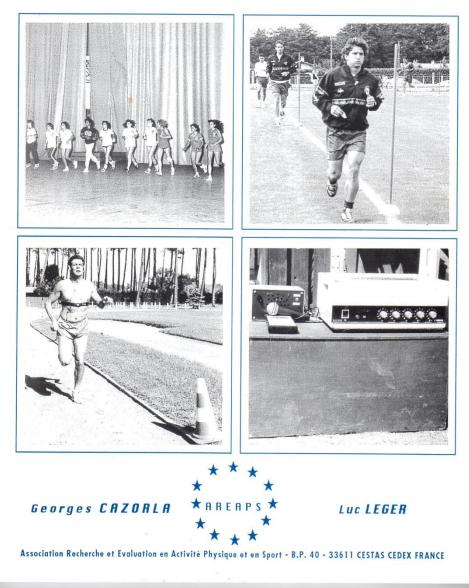


Comparison of incremental increases in the Léger-Boucher and VAMEVAL tests. The rate of speed increase is identical in each.

NO SIGNIFICANT DIFFERENCE BETWEEN THE LEGER-BOUCHER AND VAMEVAL TESTS

n = 10	VO2 (L.min ⁻¹)	VO2 ml.min ⁻¹ .kg ⁻¹	Speed km.h ⁻¹	Δ sp. L.Bou.	HR (b.min⁻¹)	Δ Lactate (mMol/L)		Δ CRP (mg/L)	
30-15s BUCHHEIT	4,91	64,20	20,10*	<u>+ 3,75</u>	192,7	10,82 *	465%	0,700 *	82%
	0,40	5,59	1,13		10,06	2,21	95%	0,080	9%
YO-YO Test	4,90	63,50	18,31*	<u>+ 1,96</u>	193	10,50 *	426%	0,686*	82%
	0,44	4,01	0,77		9,64	2,27	92%	0,130	15%
LEGER BOUCHER	4,87	62,78	16,35	Réf.	192,2	8,13	347%	0,268	33%
BENCHMARK TEST	0,80	5,12	1,47		8,12	1,92	82%	0,065	8%
VAMEVAL	4,84	62,20	16,65	+ 0.3	192,5	8,20	324%	0,254	30%
	0,60	5,22	2,68		8,34	1,62	64%	0,059	7%
SHUTTLE RUNS L. LEGER	4,91	63,40	13,36*	- 2,99	193,4	8,14	332%	0,335	39%
	0,64	7,62	1,11		10,19	1,32	54%	0,043	5%

By putting three or four players at each marker, several teams can be tested at the same time.


CONTENTS

- **1** Definitions
- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
- **5** How to use VAMEVAL test results
 - 6 How to use maximum aerobic speed (MAS) in training

HOW TO USE RESULTS OF THE VAMEVAL TEST TO ASSESS THE PHYSIOLOGICAL CAPACITY OF A FOOTBALLER Where can you find examples of using MAS to manage the intensity of different training sessions? www.cress-sport.com

COMMENT ÉVALUER ET DÉVELOPPER VOS CAPACITÉS AÉROBIES

ÉPREUVE DE COURSE NAVETTE ET ÉPREUVE VAMEVAL

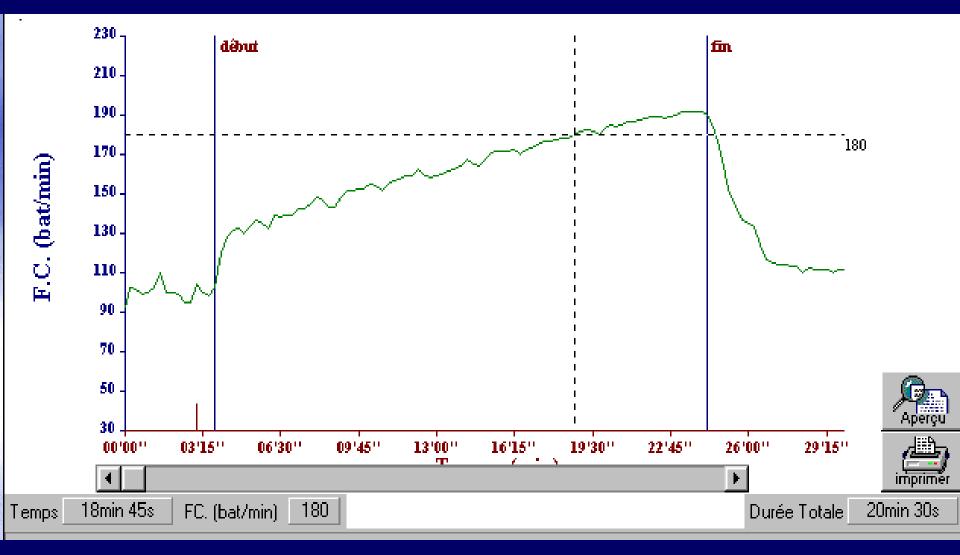
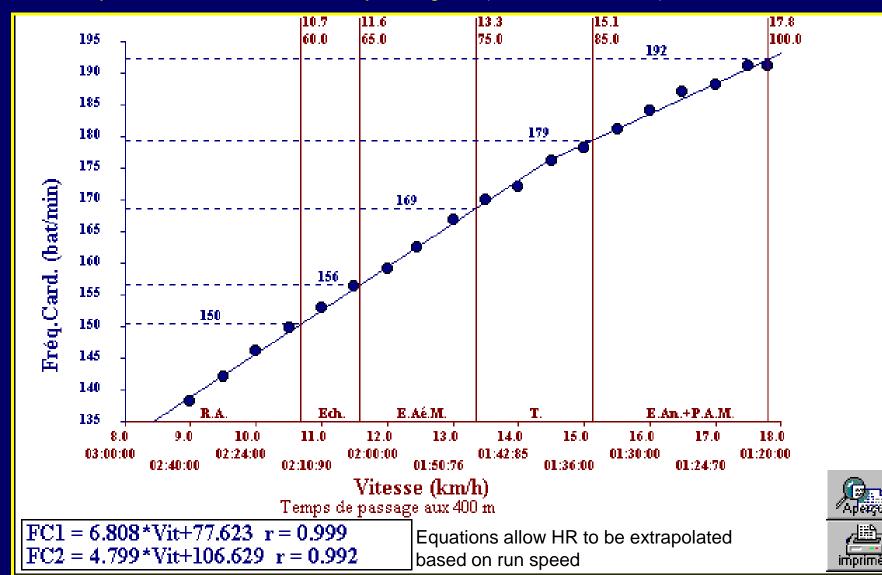
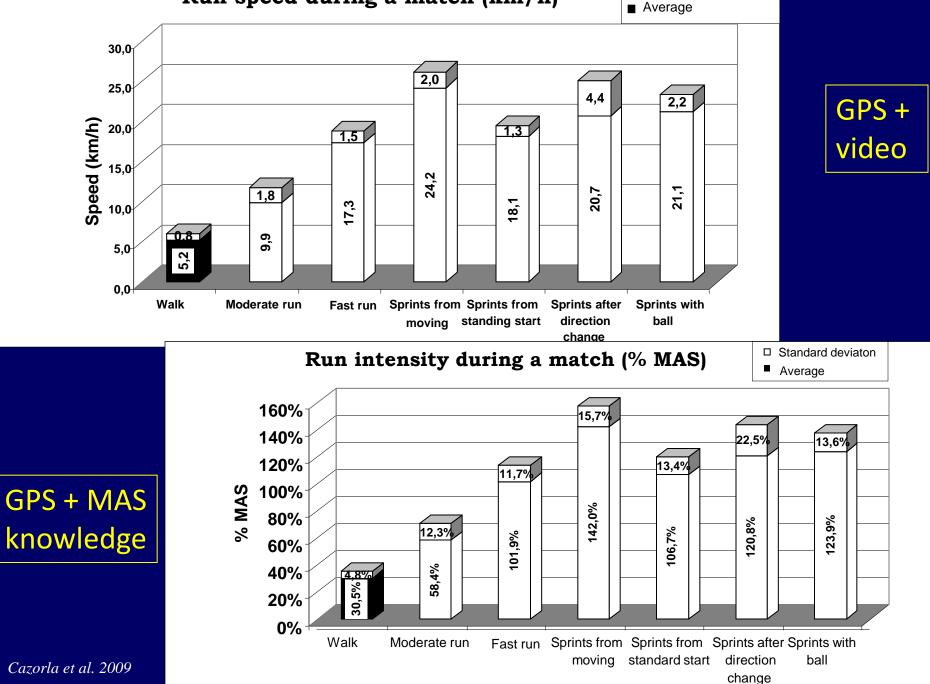


Tableau 11 : EPREUVE PROGRESSIVE DE COURSE CONTINUE A PALIERS DE UNE MINUTE : VAMEVAL


			5			P	ALIER	S 16 à 2	20						
Paliers indiqués par l'enre- gistrement	Vitesses corres- pon- dantes	Durée de l'intervalle entre cha- que 20 m	Co	onsomn	nations	maxima	les d'oxy	/gène ex	trapolée	s en fon	ction de	l'âge : V	O ₂ max (I	ml.min ⁻¹	^ı .kg ⁻¹)
gistrement	(km/h)	(s, 1/1000)	6 ans	7 ans	8 ans	9 ans	10 ans	11 ans	12 ans	13 ans	14 ans	15 ans	16 ans	17 ans	18 ans et +
PALIER 16	16.0 km/h		69,4	68,3	67,2	66,1	65,0	63,8	62,7	61,6	60,5	59,4	58,2	57,1	56,0
15 s 30 s 45 s	16.1 16.3 16.4	4.364	70,0 70,5 71,1	68,9 69,4 69,9	67,7 68,3 68,8	66,6 67,1 67,6	65,5 66,0 66,5	64,3 64,8 65,3	63,2 63,7 64,2	62, 1 62,6 63,0	61,0 61,4 61,9	59,8 60,3 60,8	58,7 59,2 59,6	57,6 58,0 58,5	56,4 56,9 57,3
PALIER 17	16.5 km/h		71,6	70,5	69,3	68,1	67,0	65,8	64,7	63,5	62,4	61,2	60,1	58,9	57,8
15 s 30 s 45 s	16.6 16.8 16.9	4.235	72,2 72,7 73,2	71,0 71,5 72,1	69.8 70,4 70,9	68,7 69,2 69,7	67,5 68,0 68,5	66,3 66,8 67,3	65,2 65,7 66,2	64,0 64,5 65,0	62,8 63,3 63,8	61,7 62,1 62,6	60,5 61,0 61,4	59,4 59,8 60,2	58,2 58,6 59,1
PALIER 18	17.0 km/h		73,8	72,6	71,4	70,2	69,0	67,8	66,6	65,5	64,3	63,1	61,9	60,7	59,5
30 \$	17.1 17.0 17.4	4.114	74,3 74,9 75,4	73,1 73,7 74,2	71,9 72,5 73,0	70,7 71,2 71,8	69,5 70,0 70,5	68,3 68,8 69,3	67,1 67,6 68,1	65,9 66,4 66,9	64,7 65,2 65,7	63,5 64,0 64,5	62,3 62,8 63,2	61,1 61,6 62,0	59,9 60,4 60,8
PALIER 19	17.5 km/h		76,0	74,7	73,5	72,3	71,1	69,8	68,6	67,4	66,2	64,9	63,7	62,5	61,3
15 s 30 s 45 s	17.6 17.8 17.9	4.000	76,5 77,0 77,6	75,3 75,8 76,3	74,0 74,6 75,1	72,8 73,3 73,8	71,6 72,1 72,6	70,3 70,8 71,3	69,1 69,6 70,1	67,9 68,3 68,8	66,6 67,1 67,6	65,4 65,9 66,3	64,2 64,6 65,1	62,9 63,4 63,8	61,7 62,1 62,6
PALIER 20	18.0 km/h		78,1	76,9	75,6	74,3	73,1	71,8	70,6	69,3	68,0	66,8	65,5	64,3	63,0
15 s 30 s 45 s	18.1 18.3 18.4	3.892	78,7 79,2 79,7	77,4 77,9 78,5	76,1 76,7 77,2	74,9 75,4 75,9	73,6 74,1 74,6	72,3 72,8 73,3	71,1 71,5 72,0	69,8 70,3 70,7	68,5 69,0 69,5	67,2 67,7 68,2	66,0 66,4 66,9	64,7 65,2 65,6	63,4 63,9 64,3

WITH A HEART RATE MONITOR...

Standard measurement of heart rate during the VAMEVAL test (Biologiciel®)


Calculating the ratio between heart rate and running speed and defining training zones: A.R.: active recovery, WU: Warm-up, MAE: moderate aerobic endurance, T: transition zone, AnE + MAP: anaerobic endurance + maximum aerobic power. HR, % of MAP (or MAS), speeds and interval times over the 400m distance used here are Automatically calculated for each zone by Biologiciel (the software used).

ESTABLISHING THE LOAD OF A MATCH OR TRAINING SESSION ON THE BODY

□ Standard deviation

ARE THERE BENCHMARKS FOR COMPARING FOOTBALLERS WHO HAVE BEEN TESTED?

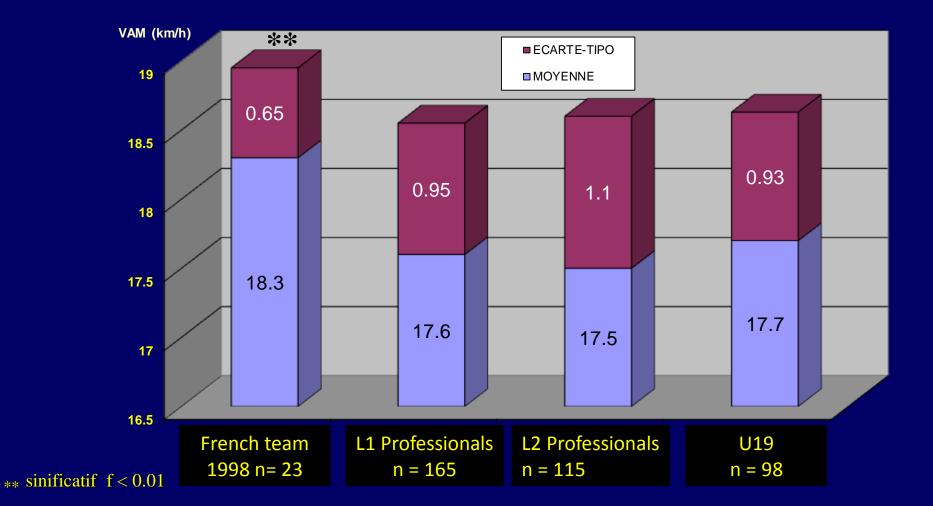
SCALE OF MAXIMUM AEROBIC SPEED (MAS) FOR STRIKERS

SCALE		VAME	AL MAS ST	RIKERS (km/	'n)			SCALE
Marks/20	13 уо	14 yo	15 уо	16 yo	17 уо	18 yo	19 yo+	Marks/20
20	17,7	19,3	18,7	18,1	18,8	19,1	19,0	20
19	17,4	18,9	18,5	17,9	18,7	18,9	18,8	19
18	17,1	18,6	18,3	17,7	18,5	18,7	18,6	18
17	16,9	18,3	18,1	17,5	18,3	18,5	18,3	17
16	16,6	17,9	17,9	17,3	18,1	18,3	18,1	16
15	16,3	17,6	17,7	17,1	18,0	18,1	17,9	15
14	16,0	17,2	17,5	16,9	17,8	17,8	17,7	14
13	15,8	16,9	17,3	16,7	17,6	17,6	17,4	13
12	15,5	16,6	17,1	16,5	17,4	17,4	17,2	12
11	15,2	16,2	16,9	16,4	17,3	17,2	17,0	11
10	14,9	15,9	16,7	16,2	17,1	17,0	16,7	10
9	14,6	15,6	16,5	16,0	16,9	16,8	16,5	9
8	14,4	15,2	16,2	15,8	16,7	16,6	16,3	8
7	14,1	14,9	16,0	15,6	16,6	16,3	16,0	7
6	13,8	14,5	15,8	15,4	16,4	16,1	15,8	6
5	13,5	14,2	15,6	15,2	16,2	15,9	15,6	5
4	13,3	13,9	15,4	15,0	16,0	15,7	15,3	4
3	13,0	13,5	15,2	14,8	15,9	15,5	15,1	3
2	12,7	13,2	15,0	14,6	15,7	15,3	14,9	2
1	12,4	12,9	14,8	14,4	15,5	15,1	14,7	1
0	12,2	12,5	14,6	14,2	15,3	14,8	14,4	0

SCALE OF MAXIMUM AEROBIC SPEED (MAS) FOR MIDFIELDERS

SCALE		VAN			SCALE			
Marks/20	13 уо	14 yo	15 уо	16 yo	17 уо	18 yo	19 yo +	Marks/20
20	19,2	20,0	19,0	19,4	19,1	19,3	19,7	20
19	18,8	19,6	18,8	19,1	18,9	19,1	19,5	19
18	18,5	19,2	18,6	18,9	18,7	18,9	19,2	18
17	18,1	18,8	18,4	18,6	18,5	18,7	19,0	17
16	17,7	18,4	18,2	18,4	18,3	18,5	18,7	16
15	17,4	18,0	18,0	18,1	18,2	18,3	18,5	15
14	17,0	17,6	17,7	17,8	18,0	18,2	18,2	14
13	16,6	17,2	17,5	17,6	17,8	18,0	18,0	13
12	16,3	16,8	17,3	17,3	17,6	17,8	17,7	12
11	15,9	16,4	17,1	17,1	17,5	17,6	17,4	11
10	15,5	16,0	16,9	16,8	17,3	17,4	17,2	10
9	15,2	15,6	16,7	16,5	17,1	17,2	16,9	9
8	14,8	15,2	16,5	16,3	16,9	17,0	16,7	8
7	14,4	14,8	16,3	16,0	16,7	16,8	16,4	7
6	14,1	14,4	16,1	15,8	16,6	16,6	16,2	6
5	13,7	14,0	15,9	15,5	16,4	16,4	15,9	5
4	13,4	13,6	15,7	15,3	16,2	16,2	15,7	4
3	13,0	13,2	15,4	15,0	16,0	16,0	15,4	3
2	12,6	12,8	15,2	14,7	15,9	15,8	15,1	2
1	12,3	12,4	15,0	14,5	15,7	15,6	14,9	1
0	11,9	12,0	14,8	14,2	15,5	15,4	14,6	0

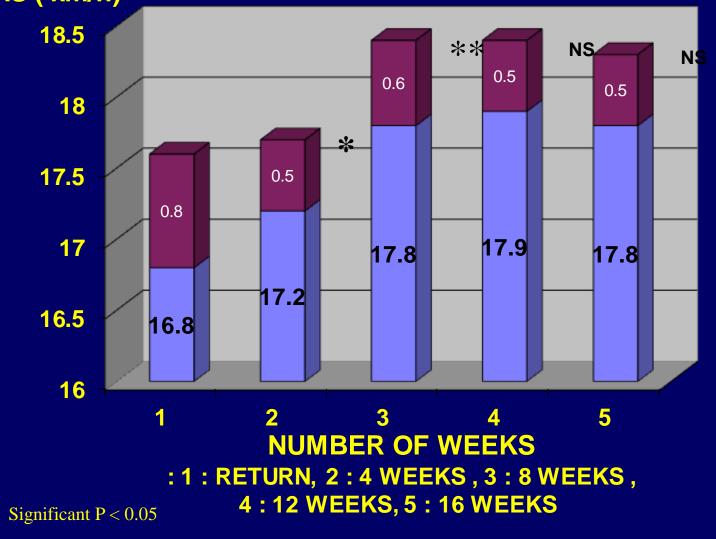
SCALE OF MAXIMUM AEROBIC SPEED (MAS) FOR DEFENDERS


SCALE		VAME	/AL MAS DE	FENDERS (k	m/h)			SCALE
Marks/20	13 уо	14 yo	15 уо	16 yo	17 уо	18 yo	19 yo +	Marks/20
20	19,1	18,2	19,0	18,5	18,6	18,8	19,1	20
19	18,7	17,9	18,7	18,3	18,4	18,6	18,9	19
18	18,4	17,6	18,4	18,0	18,3	18,5	18,7	18
17	18,1	17,4	18,1	17,8	18,1	18,3	18,5	17
16	17,8	17,1	17,8	17,6	17,9	18,1	18,3	16
15	17,4	16,8	17,5	17,4	17,8	17,9	18,1	15
14	17,1	16,6	17,2	17,2	17,6	17,7	17,9	14
13	16,8	16,3	16,9	17,0	17,4	17,5	17,7	13
12	16,4	16,1	16,6	16,7	17,3	17,4	17,5	12
11	16,1	15,8	16,3	16,5	17,1	17,2	17,3	11
10	15,8	15,5	16,0	16,3	16,9	17,0	17,0	10
9	15,4	15,3	15,7	16,1	16,8	16,8	16,8	9
8	15,1	15,0	15,3	15,9	16,6	16,6	16,6	8
7	14,8	14,7	15,0	15,7	16,4	16,5	16,4	7
6	14,4	14,5	14,7	15,4	16,3	16,3	16,2	6
5	14,1	14,2	14,4	15,2	16,1	16,1	16,0	5
4	13,8	14,0	14,1	15,0	15,9	15,9	15,8	4
3	13,4	13,7	13,8	14,8	15,8	15,7	15,6	3
2	13,1	13,4	13,5	14,6	15,6	15,5	15,4	2
1	12,8	13,2	13,2	14,4	15,4	15,4	15,2	1
0	12,4	12,9	12,9	14,1	15,3	15,2	15,0	0

SCALE OF MAXIMUM AEROBIC SPEED (MAS) FOR GOALKEEPERS

SCALE	VAMEVAI	MAS GOALKI	EPERS (km/h)	SCALE
Marks/20	14-15 уо	16-17 уо	18 yo +	Marks/20
20	18,0	18,0	18,3	20
19	17,8	17,7	18,0	19
18	17,6	17,5	17,8	18
17	17,4	17,3	17,5	17
16	17,2	17,0	17,2	16
15	17,0	16,8	17,0	15
14	16,8	16,5	16,7	14
13	16,6	16,3	16,4	13
12	16,4	16,1	16,2	12
11	16,2	15,8	15,9	11
10	16,0	15,6	15,7	10
9	15,8	15,3	15,4	9
8	15,6	15,1	15,1	8
7	15,4	14,9	14,9	7
6	15,2	14,6	14,6	6
5	15,0	14,4	14,4	5
4	14,8	14,2	14,1	4
3	14,6	13,9	13,8	3
2	14,4	13,7	13,6	2
1	14,2	13,4	13,3	1
0	14,0	13,2	13,0	0

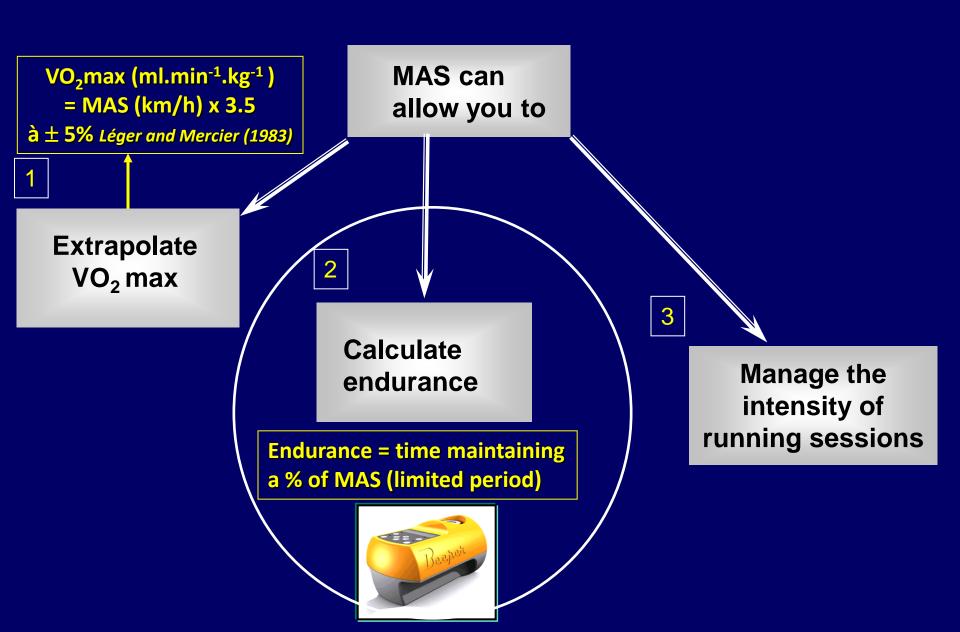
MAXIMUM AEROBIC SPEED and LEVEL OF PROFICIENCY


A minimum MAS of 17.5 km/h seems to be needed in order to play football at a good level.

WHEN SHOULD THE VAMEVAL TEST BE USED DURING THE SEASON?

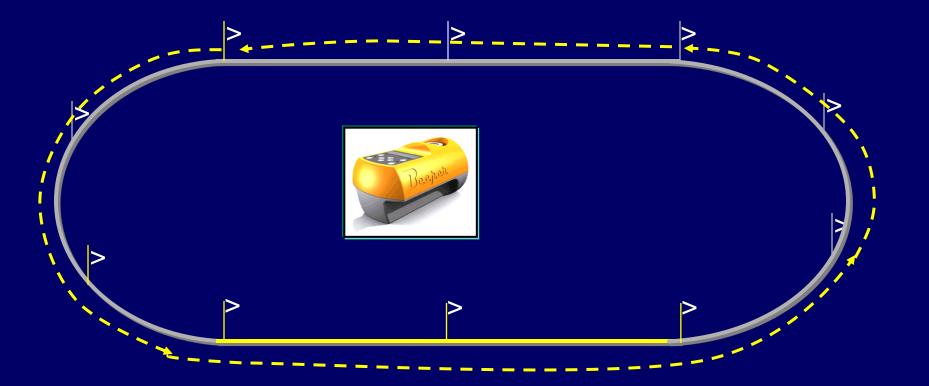
MAS DEVELOPMENT DURING A SEASON

MAS increases during the first eight weeks of the season but not afterwards MAS (km/h)



★ ★ P < 0.01

*


CONTENTS

- **1** Definitions
- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
- **5** How to use VAMEVAL test results
 - 6 How to use maximum aerobic speed (MAS) in training

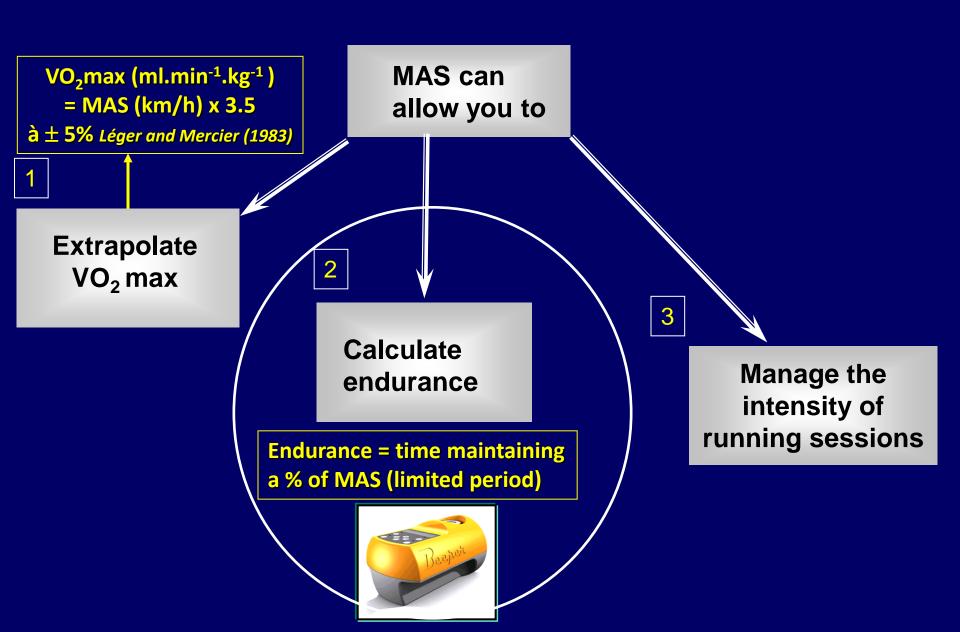
ASSESSING AEROBIC ENDURANCE IN A LIMITED TIMEFRAME

Aerobic endurance, which is the % of MAS which can be used over a long time period, can also be assessed using the VAMEVAL test. Start by conducting the VAMEVAL test 2) separate groups by ability 3) programme the beeper or use the pre-programmed CD: set MAS at a % = 90, 95, 100, 105%..., start the stopwatch...

Single limited-duration test

Time spent at 100% of MAS

AEROBIC ENDURANCE					
VERY HIGH	HIGH	AVERAGE	LOW	VERY LOW	
> 15 min.	9 - 11 min.	6 - 8 min.	5 min.	< 4 min.	


MAS determined by Léger et Boucher's (1980) running test

TIME SPENT AT 100% OF MAS = AEROBIC ENDURANCE						
Very high	High	Average	Low	Very low		
> 11 min	7-10 min	5- 6 min	3-4 min	< 3 min		

MAS determined by the VAMEVAL test

CONTENTS

- **1** Definitions
- 2 How to choose a test
- 3 Comparison of the main tests: VAMEVAL protocols
- 4 In-depth analysis of VAMEVAL
- 5 How to use VAMEVAL test results
- 6 How to use maximum aerobic speed (MAS) in training

HOW SHOULD MAS BE USED

IN TRAINING?

Different types of training session:

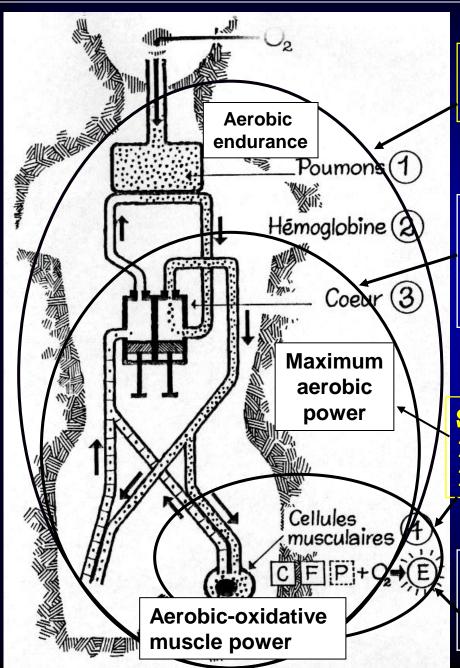
- Continuous training, submax (60–80% MAS) long duration (aerobic endurance development: pre-season and first week back at training),
- Fartlek (Mixed development of endurance + maximum aerobic power: first 15 days of training),
- Interval training:

- Long intervals ([4 to 8 min: 1 min recovery] x 3–6 reps) submax and max (80– 100 % MAS): (Mixed development of maximum aerobic power + endurance: first 3 weeks back at training),

- Short intervals ([30sec to 3 min: 3-4min recovery] x 2–4 reps) max and ABOVE max (100–130 % MAS) (Anaerobic lactic power development 30–60 s + anaerobic endurance: 2–3 min: 6 weeks after returning to training)

- Sprints ([10 sec on, 15 sec off/20 sec on, 15 sec off] x 40) : intermittent short above max (110–130 % MAS): maximum aerobic power development

 Short sprint reps: ([20m x 12–15 reps: 30sec] x 2–4 sets: 4–6 min activity): Development of sprint repetition capacity + increased aerobic-oxidative muscle power


Different training sessions dependant on % of MAS:

Type of training	Characteristics	Duration	% MAS	Rest period	Development
Continuous	Submax long duration, marathon type. Long Slow Distance (LSD),	> 30 min	60–80		Aerobic endurance
Mixed	Fartlek (3/4-1/4; 2/3-1/3; 1/2-1/2)	> 20 min	110–140	Active 40–60	Endurance + MAP
Interval training:					
Long	Submax, max	5–8 min x 4–6 reps	80–100	Rest 1– 2 mins	Endurance + MAP + anaerobic lactic power development
Medium	Max and above max	30 sec–3 min x 3–5	100–140	Rest 3– 4 mins	Anaerobic lactic power development + MAP
Short	Intermittent runs	10–20 sec x 30–40	110-130	Rest 15–30 sec	ΜΑΡ
Very short	Sprint reps	20–30m x 10–15	Max speed	Rest 30–40 sec	Speed endurance + aerobic-oxidative muscle power
Intermittent	Competition time, or by 4, 5, 610	Depends on comp.	> Race speed	Active	Specific endurance

Physiological impact depending on % of MAS used in training.

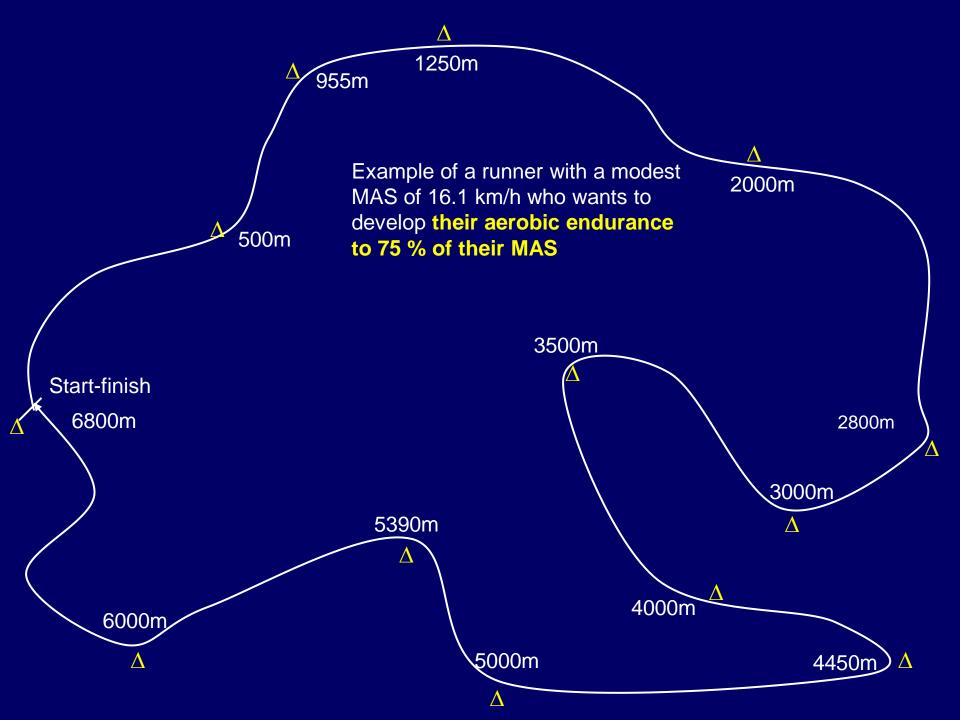
% of MAS	TYPE OF EXERCISE	DESIRED OUTCOME. POINT IN SEASON
50–55	9–10 minutes continuous physical activity	Active recovery after exercise over lactate threshold
55–65	7–10 minutes continuous physical activity	Pre-training warmup. No effect on aerobic capacity development.
65–75	> 15 mins continuous physical activity	Moderate endurance: beginning of pre-season.
75–85	< 15 mins running or constant activity	Developing specific endurance: Pre-season and during competition season (individual sports)
85–100	Long intervals: 3–5 min with 2–3 min recovery	Developing maximum aerobic power and lactate tolerance. Pre-season and during competition season (team sports)
100–130	Short intervals (15s–15s)	Maximum aerobic power development. Beginning of season and competition season (team sports)
100–155	Exercises over short intervals: 1–2 min with 4 min recovery	Endurance and anaerobic lactic power. Pre- competition period (for highly trained athletes)

DEVELOPING AEROBIC CAPACITY DURING THE SEASON

Aerobic endurance: Off season < MAS (65–85% MAS, > 20 min)

MAP: fartlek: beginning of the season: (10–20s accelerations at 120–140% of MAS) × 15–20 reps > 20 min

Sprint intervals: In season [10– 15s at 110–130% of MAS: 15–20 s rest] × 30–40 reps


Sprint reps: In season [3–5 s at 96–100% benchmark speed: 30–40 s rest] × 10–15 reps

DEVELOPING AEROBIC CAPACITY

AEROBIC ENDURANCE

DURING THE OFF-SEASON, PRE-SEASON TRAINING OR DURING WARMUPS

Examples of continuous exercises which use MAS

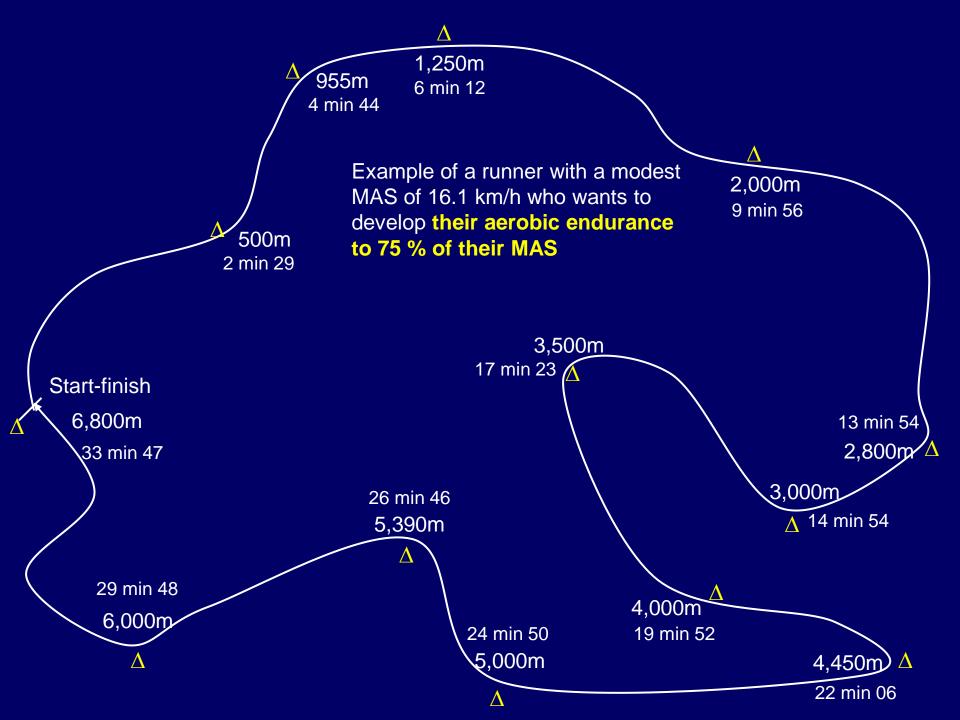
ENDURANCE AEROBIE ET PUISSANCE AEROBIE MAXIMALE : 75 à 85% de V... 🗙

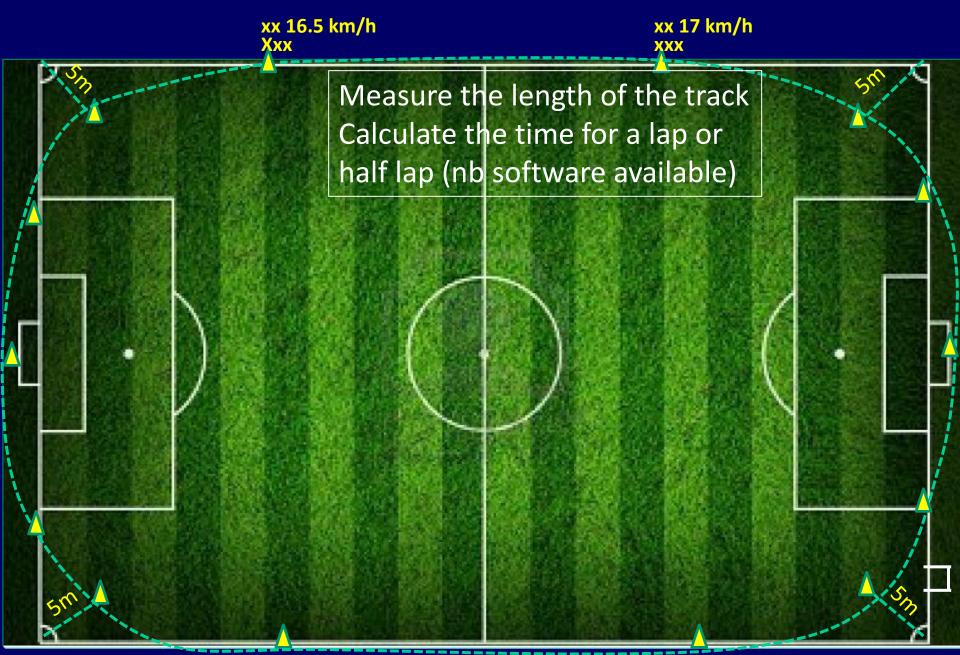
AFIFI

Zouheir

16/07/2004

Г AI	CTIONS PH	YSIOLOGI	QUES : —				CES CONS	EILLES : -			
Développe la capacité maximale de transport et d'utilisation de l'oxygène. Sollicite de plus en plus les réserves musculaires de glycogène. Le muscle atteint, voire dépasse sa capacité oxydative et					1- course par intervalles longs : 4 à 6min. Récupération incomplète : 1 à 2min. Durée totale supérieure à 30min. 2- course en Fartlek : Enchaînement de courses						
					i <mark>des Temps de passage(h:min:s)</mark> DISTANCES (m) de 1 à 99 999						
	∕ovAln	(bt/min)	500	955	1 250	2 000	2 800	3 000	3 500	4 000	
+	75	173	02:29	04:44	06:12	09:56	13:54	14:54	17:23	19:52	
	76	174	02:27	04:40	06:07	09:48	13:43	14:42	17:09	19:36	
	77	175	02:25	04:37	06:02	09:40	13:33	14:31	16:56	19:21	
	78	177	02:23	04:33	05:58	09:33	13:22	14:20	16:43	19:06	
	79	178	02:21	04:30	05:53	09:26	13:12	14:09	16:30	18:52	
	80	179	02:19	04:26	05:49	09:19	13:02	13:58	16:18	18:38	
	%VAM	FC		Tableau des Distances(m) DUREES (h:min:s)							
		(bt/min)	00:01:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	00:00:00	
•	75	173	201								-
	76	174	204								
	77	175	207								_
	78	176	209					ļ	ļ		
	79	177	212								


Calcul de la distance à parcourir pour un pourcentage de V.A.M. donné et une durée d'exercice donnée


VITESSE AÉROBIE MAXIMALE V.A.M. (en km/h)	% de V.A.M. (Intensité de l'exercice)	DURÉE DE L'EXERCICE (en hh:mm:ss)	DISTANCE À PARCOURIR (en mètres)	
20	120%	00:00:30	200,00	

Calcul de la durée d'un exercice à un pourcentage de V.A.M. donné

et une distance donnée à parcourir

VITESSE AÉROBIE MAXIMALE	% de V.A.M.	DISTANCE À PARCOURIR	DURÉE DE L'EXERCICE	
V.A.M. (en km/h)	(Intensité de l'exercice)	(en mètres)	(en hh:mm:ss)	
20	120%	200	00:00:30	

xx 17.5 km/h xxx

Xx 18 km/h xxx

MAXIMUM AEROBIC POWER

Throughout the season Example of interval training using MAS

Interval training: 15sec Sprint – 15sec Recovery

- With sprints of equal rest, short interval training can be 1.5–2 times as effective a mode of training as continuous exercise.
- There are numerous variations thatcan be introduced... with and without a ball.
- The variations of intensity, duration of exercise, duration of recovery period and total number of reps depend on the fitness level of the players.

1- Don't plan this type of training any earlier than two or three weeks back into preseason training (in the case of three training sessions a week)

2- Start with short duration and limited above max intensity (105–110% of MAS), recovery time double the interval time and with a number of reps giving a total duration equal to or slightly more than ten minutes.

Example: [10 sec sprints at 110% of MAS: 20 sec recovery] x 25

Then progressively increase volume first of all:

- Increase the number of reps from 25 to 30, 35, 35 and then 40
- Increase duration of each sprint from 10 seconds to 15

Next increase intensity

- Increase MAS from 110 to 115, 120, 125 then 130%

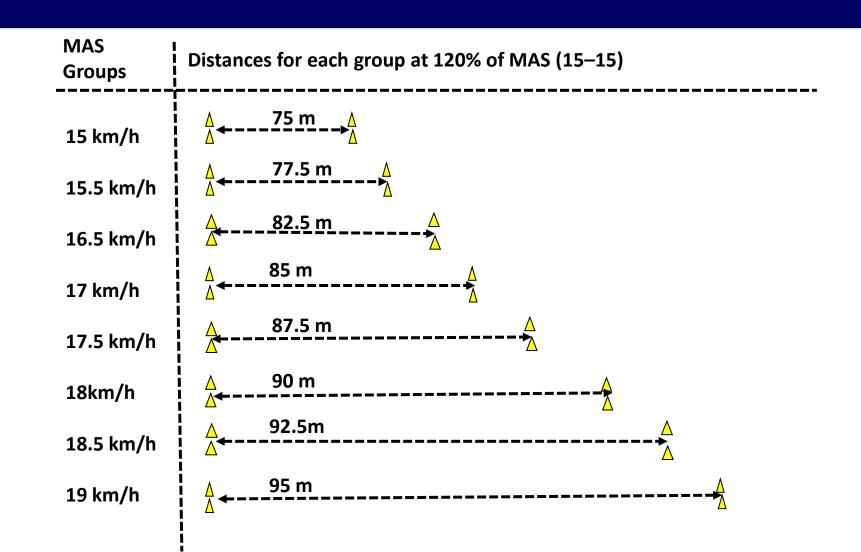
- Decrease recovery time from 20 seconds to 15 then 10

Putting in place one of these training sessions with a group of players of similar ability and fitness is easy: a football pitch is the ideal size

1- Start by evaluating the MAS of your players (VAMEVAL or Léger-Boucher test)

2- Group athletes with the same MAS together (five or six athletes in each group).

3- Calculate the distance to be covered in each interval, for example over 15 sec at 110% of MAS for each group. (These calculations can be done using Excel: *see example*)


Calcul de la distance à parcourir pour un pourcentage de V.A.M. donné et une durée d'exercice donnée

VITESSE AÉROBIE MAXIMALE	% de V.A.M.	DURÉE DE L'EXERCICE	DISTANCE À PARCOURIR				
V.A.M. (en km/h)	(Intensité de l'exercice)	(en hh:mm:ss)	(en mètres)				
14,5	120%	00:00:10	48,33				
Calcul de la durée d'un exercice à un pourcentage de V.A.M. donné							
et une distance donnée à parcourir							
VITESSE AÉROBIE MAXIMALE	% de V.A.M.	DISTANCE À PARCOURIR	DURÉE DE L'EXERCICE				
V.A.M. (en km/h)	(Intensité de l'exercice)	(en mètres)	(en hh:mm:ss)				
14,5	120%	30	00:00:06				

4- If the training session format is 15 sec sprints – 15 sec recovery, blow the whistle every fifteen seconds.

Each group must run the set distance in the 15 second period

Short interval training session: 15 second sprints – 15 second recovery at each end. The footballers should be divided into groups according to their MAS. Use of a distance measurer can help mark out the length of each interval.

EXAMPLES OF INTERVAL TRAINING SESSIONS FOR DEVELOPING

- MAXIMUM AEROBIC POWER AND
- SPECIFIC ENDURANCE FOR FOOTBALL

These sessions can also be done with a ball, which increases their intensity

Increase the number of reps and then increase intensity and decrease recovery time:

Example 1: [10 sec sprints at 110% of MAS: 20 sec recovery] x 25

Example 2: [10 sec sprints at 110% of MAS: 20 sec recovery] x 30 (sets of 2 x 15 or 10 +20 or 30) then 40 reps

Example 3: [15 sec sprints at 110% of MAS: 20 sec recovery] x 30 (sets of 2 x 15 or 10 +20 or 30) then 40 reps

Example 4: [15 sec sprints at 115% (then 120, 125, 130) of MAS: 20 sec recovery] x 40

Example 5: [15 sec sprints at 115% (then 120, 125) of MAS: 15 sec then 10 sec recovery] x 40

SOME FINAL THOUGHTS

1) ATHLETIC-TYPE PHYSICAL PREPARATION

The athlete-player. Aimed at players who can train more than three times a week (professional clubs)

The younger the footballer, the more use should be made of game-situation methods (contextualised physical preparation 4×4 , 5×5 , 6×6) and then integrated methods become the priority.

However the VAMEVAL or Léger-Boucher test can help to test VO2max at the beginning and throughout the season. Now you know why I prefer the VAMEVAL test!

> Thank you for your attention!